

## Technical presentation of Fire test

#### 1. Introduction

Fire resistance requirements for a PV module intended for building applications are defined in local or national building codes. PV modules as building product – i.e. serving as roof covering materials, elements for building integration or that are mounted on buildings – are subject to specific safety requirements originating from national building codes.

The equipment confirm to IEC 61730-(Part 1&2): 2004, IEC 61730:2016 (Part 1&2, MST23) and referenced by UL 1703:2015, UL790 and ASTM E108-04, ENV 1187-1-4, ISO 13501-5:2005, ISO 5657, ISO 834-3, ISO 834-1, Annex B of IEC 61730-2, NBC –BIS: 2016 standards.

#### 2. Component

The system could be showed as follow figure 1:



#### Figure 1

The system constructed with Main equipment, Fuel supply, Gas room, Exhaust, Over burner, Control system and Room.

#### 2.1 Main equipment

#### Note: The requirement for the client is high light.

Main equipment could be represented in the table 1.

Table 1

| S. No | Component           | Function               | Parameter    |                                        |
|-------|---------------------|------------------------|--------------|----------------------------------------|
| 1     | Blower and air duct | Input the out room air | $\checkmark$ | Adjustable fins mounted inside the air |
|       |                     |                        |              | duct to straighten the air stream and  |







|   |                    |                         |   | reduce t                       | urbulence;       |                   |
|---|--------------------|-------------------------|---|--------------------------------|------------------|-------------------|
|   |                    |                         | v | <ul> <li>To make</li> </ul>    | wind speed w     | ith 3point        |
|   |                    |                         |   | average                        | at 5.3 ± 0.2 m/  | ′s.               |
| 2 | Wind Tunnel        | Generate a uniform wind | v | Wind tu                        | nnel material:   | Steel;            |
|   |                    | speed                   | v | Wind tu                        | nnel height fro  | m ground: 1111    |
|   |                    |                         |   | ± 100 m                        | m;               |                   |
|   |                    |                         | v | Wind tu                        | nnel hole diam   | eter: 2133.6 ±    |
|   |                    |                         |   | 100 mm                         | * 762mm;         |                   |
|   |                    |                         | v | Wind tu                        | nnel length: To  | make wind         |
|   |                    |                         |   | speed w                        | ith 3point at 5  | .3 ± 0.2 m/s.     |
| 3 | Nozzle burner      | Produce flame           | v | <ul> <li>Burner s</li> </ul>   | pecs: Refer IEC  | C 61730-2:2016,   |
|   |                    |                         |   | Annexur                        | е В;             |                   |
|   |                    |                         | v | <ul> <li>Length c</li> </ul>   | f nozzle burne   | r: 1,120mm ±      |
|   |                    |                         |   | 0.1 mm;                        |                  |                   |
|   |                    |                         | v | / Diamete                      | r of nozzle: No  | minal 50.9 mm±    |
|   |                    |                         |   | 0.1 mm                         | (60.3 ± 0.1 mm   | n OD);            |
|   |                    |                         | v | <ul> <li>Burner s</li> </ul>   | lot: (12.7 ± 0.1 | ) mm X (910.0 ±   |
|   |                    |                         |   | 1.5) mm                        | (Length X Wid    | e);               |
|   |                    |                         | v | Both end                       | ds: nominal 25   | ± 0.13 mm (33.4   |
|   |                    |                         |   | ± 0.13 m                       | im OD);          |                   |
|   |                    |                         | v | Fire spec                      | cification:      |                   |
|   |                    |                         |   | Fire                           | Flame            | Flame             |
|   |                    |                         |   | Resistance                     | Temp(Ideal)      | Length(Ideal)     |
|   |                    |                         |   | Class                          |                  |                   |
|   |                    |                         |   | A                              | (760±            | <1.82m            |
|   |                    |                         |   |                                | <b>28)</b> ℃     |                   |
|   |                    |                         |   | A                              | (760±            | <2.4m             |
|   |                    |                         |   |                                | <b>28)</b> ℃     |                   |
|   |                    |                         |   | A                              | (704±            | <3.9m             |
|   |                    |                         |   |                                | <b>28)</b> ℃     |                   |
| 4 | Rack/deck/platform | Place the module        | v | / Test mo                      | unting Rack sh   | ould be made of   |
|   | -                  |                         |   | fire resis                     | tant material;   |                   |
|   |                    |                         | v | <ul> <li>Test more</li> </ul>  | unting Rack ca   | n adjust angle of |
|   |                    |                         |   | module                         | for ±30 Degree   | e from            |
|   |                    |                         |   | horizont                       | al, with minim   | um inclined       |
|   |                    |                         |   | scale of                       | 0.01 degree, w   | here 22.62        |
|   |                    |                         |   | degree i                       | s marked.        |                   |
|   |                    |                         | v | Manual                         | adjustment sha   | all be allowable  |
|   |                    |                         |   | by gear of                     | change           |                   |
|   |                    |                         | v | <ul> <li>Platform</li> </ul>   | with side mar    | k 2.5 m and 4.2   |
|   |                    |                         |   | m locati                       | on on both side  | e of edges        |
|   |                    |                         | v | <ul> <li>Platform</li> </ul>   | should be equ    | uipped with a     |
|   |                    |                         |   | steel tra                      | y to collect bui | ming waste        |
|   |                    |                         | v | <ul> <li>Tilting fr</li> </ul> | ame shall be a   | ssembled and      |
|   |                    |                         |   | removat                        | ole on test decl | k                 |



zealwe.cn



**PV Doctor:** Inspection & Improving PID Recovery Device / String Optimizer / PV Measurement / PV Consulting Service



| 5 | Baffle          | Prevent backfiring and     | $\checkmark$ | Should be mounted on the back edge      |
|---|-----------------|----------------------------|--------------|-----------------------------------------|
|   |                 | test subject sliding       |              | of the test deck                        |
| 6 | Angle indicator | Test the angle of the rack | $\checkmark$ | Angle marking: within 22 $\sim$ 23°,    |
|   |                 |                            |              | resolution 0.01°                        |
|   |                 |                            | $\checkmark$ | Material: Heat resistant 800 °C without |
|   |                 |                            |              | deformation and non-flammable           |
|   |                 |                            |              | material                                |
| 7 | Thermocouple    | Test burning temperature   | $\checkmark$ | Туре: К;                                |
|   |                 | above flame                | $\checkmark$ | Response time: < 1 second               |

#### 2.2 Fuel supply

Fuel supply could be represented in the table 2.

Table 2

| S. No | Component                   | Function                | Parameter                                             |
|-------|-----------------------------|-------------------------|-------------------------------------------------------|
| 1     | Steel                       | Store the gas           | $\checkmark$ Suitable for propane:                    |
| -     | cylinder( <b>offered by</b> |                         | $\checkmark$ About 40L (just suggest):                |
|       | the customer)               |                         |                                                       |
|       | 4pcs                        |                         |                                                       |
| 2     | Vaporizer                   | Vaporize the liquid gas | $\checkmark$ The gas press of the nozzle end is at    |
| 3     | Gas tube                    | Transfer the gas to the | least 1Mpa:                                           |
|       |                             | nozzle burner           | $\checkmark$ The diameter of the tube is 25mm:        |
|       |                             |                         | $\checkmark$ Depending on the distance between the    |
|       |                             |                         | gas room and the nozzle burner.                       |
| 4     | Gas flow meter              | Control the gas flow    | ✓ 21,000 Btu/min ~ 22,000 Btu/min (369                |
|       |                             |                         | kWh $\sim$ 387 kWh) with respect to (760 ±            |
|       |                             |                         | 28) °C.                                               |
|       |                             |                         | ✓ 18,000 Btu/min ~ 19,000 Btu/min (316                |
|       |                             |                         | kWh ~334 kWh) with respect to (704 $\pm$              |
|       |                             |                         | 28) °C.                                               |
| 5     | Gas supply auto             | switch to another gas   | ✓ With gas pressure monitor.                          |
|       | switch                      | supply automatically at |                                                       |
|       |                             | low gas pressure.       |                                                       |
| 6     | Gas room(offered            | Separate the gas supply | ✓ Two separate room, one for vaporizing               |
|       | by the customer,            | with the burning place. | and one for propane.                                  |
|       | figure 1 as                 |                         | ✓ The Propane room is at least                        |
|       | reference)                  |                         | 3m*3m*3m(L*W*H);                                      |
|       |                             |                         | $\checkmark$ The Propane room is well-ventilated at   |
|       |                             |                         | least 1m <sup>3</sup> /min;                           |
|       |                             |                         | $\checkmark$ The vaporizer room is at least           |
|       |                             |                         | 3m*3m*3m(L*W*H);                                      |
|       |                             |                         | $\checkmark$ The vaporizer room is well-ventilated at |
|       |                             |                         | least 1m <sup>3</sup> /min;                           |
|       |                             |                         | $\checkmark$ The distance between vaporizer room      |
|       |                             |                         | and nozzle burner is less than 10m;                   |
| 7     | Back flash arrestor         | Avoid the flash go back | $\checkmark$                                          |

#### 2.3 Exhaust







#### Table 3

| S. No | Component         | Function                 | Parameter                                                        |
|-------|-------------------|--------------------------|------------------------------------------------------------------|
| 1     | Exhausted gas     | Inspect the gas          | $\checkmark$ According to the local law(CO and CO <sub>2</sub> ) |
|       | analysis          | component                | are detected and CO could be ignored.                            |
|       | system(offered by |                          |                                                                  |
|       | the customer)     |                          |                                                                  |
| 2     | Toxic gas         | Treat Toxic gas          | $\checkmark$ According to the local law                          |
|       | treatment         |                          |                                                                  |
|       | system(offered by |                          |                                                                  |
|       | the customer)     |                          |                                                                  |
| 3     | Extraction        | Extract out the gas from | ✓ Decide by the room(referenced $400 \mathrm{m}^3$               |
|       | Blower(offered by | the room                 | /min for figure 1 room size).                                    |
|       | the customer)     |                          |                                                                  |

#### 2.4 Oven burner

Oven burner could be represented in the table 4.

Exhaust could be represented in the table 3.

|       | Table 4                   |                                     |                                                                                                                                                                                                                                                                        |  |  |
|-------|---------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| S. No | Component                 | Function                            | Parameter                                                                                                                                                                                                                                                              |  |  |
| 1     | Oven container            | Burning the brand                   | <ul> <li>✓ Size: 40 cm X 40 cm (Length X Wide)</li> <li>✓ Oven burner container size: 50 cm X 50 cm X 50 cm (Length X Wide X Height);</li> <li>✓ Container material: Steel, temperature resistance up to 1,000 °C.</li> </ul>                                          |  |  |
| 2     | Thermal resistance heater | Control flame<br>temperature        | <ul> <li>✓ (888 ± 28) °C @ 58.7 mm above the top<br/>of the burner</li> </ul>                                                                                                                                                                                          |  |  |
| 3     | Brand holder              | Hold the brand                      | <ul> <li>✓ 3 kg minimum weight allowance</li> <li>✓ brands shall be enveloped in the flame</li> </ul>                                                                                                                                                                  |  |  |
| 4     | Brand clip                | Rotate and remove<br>burning brands | <ul> <li>✓ High temperature resistance.</li> </ul>                                                                                                                                                                                                                     |  |  |
| 5     | Brand                     | For burning-brand test              | <ul> <li>✓ Brands mass: 10 g to 2,000 gram;</li> <li>✓ Brand type: kiln dried Douglas fir<br/>lumber free from knots and pitch<br/>pockets;</li> <li>✓ Brand Size (mm): 300X300X57 for Class<br/>A, 150X150X57 for Class B,<br/>38.1X38.1X19.8 for Class C;</li> </ul> |  |  |

### 2.5 Brand chamber

Brand chamber could be represented in the table 5.

 S. No
 Component
 Function
 Parameter

 1
 Brand Chamber
 Store brand
 ✓
 Temperature: RT+10~60°C;

 ✓
 Size: 50 cm X 50 cm X 50 cm (Length X Wide X Height);

#### 2.6 Control system

Shanghai Zealwe Technology Co., Ltd. Add: No.60, Zhonghui Road, Minhang District, Shanghai, China Tell: +86-21-5432 2103 / 5432 2105 E-mail: info@zealwe.cn





# sira

#### Control system could be represented in the table 6

#### Table 6

| S. No | Component        | Function                 | Pa           | rameter                                   |
|-------|------------------|--------------------------|--------------|-------------------------------------------|
| 1     | Visual Monitor   | Observe the state        | $\checkmark$ | 3 cameras are installed under, above      |
|       | System           |                          |              | and one side of the test deck             |
| 2     | Burning          | Monitor the temperature  | $\checkmark$ | Temperature data are collected every      |
|       | temperature      | of the flame             |              | 10 second                                 |
|       | monitor          |                          | $\checkmark$ | Average latest 2 minutes data to obtain   |
|       |                  |                          |              | required temperature                      |
|       |                  |                          | $\checkmark$ | Gas flow tuned automatically to retain    |
|       |                  |                          |              | burning heat                              |
| 3     | Wind speed       | Air velocity monitor and | $\checkmark$ | air flow is tuned automatically to retain |
|       | monitor          | control                  |              | velocity at (5.3 ± 0.2) m/s (1 minute     |
|       |                  |                          |              | average)                                  |
| 4     | Auto ignition    | Ignite the gas           | $\checkmark$ | ignite small amount of fuel and then      |
|       | control          |                          |              | control fuel and air flow by program      |
| 5     | Air duct         | Monitor the              | $\checkmark$ | collect air duct temperature every 10     |
|       | temperature      | temperature of Air duct  |              | seconds after ignition                    |
|       | monitor          |                          |              |                                           |
| 6     | Emergency stop   | Shut down power and air  | $\checkmark$ |                                           |
|       | button           | supply                   |              |                                           |
| 7     | Gas leakage      | Monitor the gas leakage  | $\checkmark$ |                                           |
|       | monitor          | and send information to  |              |                                           |
|       |                  | the PC to Shut down      |              |                                           |
|       |                  | power and air supply     |              |                                           |
| 8     | Gas flow monitor | Gas flow monitor &       | $\checkmark$ | Adjust to meet the flame temperature      |
|       |                  | control                  |              | and burning heat.                         |
| 9     | Gas pressure     | Gas pressure monitor &   | $\checkmark$ | Switch automatically the gas supply.      |
|       | monitor          | valve control            |              |                                           |
| 10    | Screen           | Display the visual       | $\checkmark$ | 40'' LCD                                  |
|       |                  | monitor and datasheet    |              |                                           |

#### 2.7 Room(figure 1 as reference)

Room for the test could be represented in the table 7

|       | Table 7          |                           |                                                                                                                                                             |  |
|-------|------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| S. No | Component        | ponent Function Parameter |                                                                                                                                                             |  |
| 1     | Wall of the Room |                           | <ul> <li>✓ should be fire resistance Coating;</li> <li>✓ Tiles on all wall of room and floor of room with necessary fire protection arrangement.</li> </ul> |  |
| 2     | Structure        |                           | <ul> <li>✓ The combustor room is at least<br/>10m*5m*5m(L*W*H);</li> <li>✓ Should be fire resistance<br/>Coating(according to the local law);</li> </ul>    |  |





|   |                  | ✓<br>✓      | Tiles on all wall of room and floor of<br>room with necessary fire protection<br>arrangement(according to the local<br>law);<br>There is a hole on the wall with the size<br>at least 2.5m*1m(W*H). And the hole is<br>about 1.1m high from the ground. Also,<br>there should be nothing outside the hole<br>in at least 10m distance;<br>The structure of the room is according to<br>the local law. |
|---|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Electrical Power | ✓<br>✓<br>✓ | Inlet Blower: 415V, Φ3, 8.5kW<br>Control Parts: 220V, Φ1, 6kW<br>Extraction Blower: Depending on the                                                                                                                                                                                                                                                                                                  |
|   |                  |             | power of the extraction<br>blower.(Referenced 415V, Φ3, 7.5kW<br>for figure 1 room size)                                                                                                                                                                                                                                                                                                              |

#### 3. Others

Others are present in table 8

|       | Table 8           |                                                                                           |  |  |
|-------|-------------------|-------------------------------------------------------------------------------------------|--|--|
| S. No | Items             | Presentation                                                                              |  |  |
| 1     | Accessories       | <ul> <li>All required accessories are to be provided.</li> </ul>                          |  |  |
|       |                   | <ul> <li>Cable, duct and pipe material must be fire-resistance.</li> </ul>                |  |  |
|       |                   | ✓ Motoring accessories (ex: thermocouple wire) must be                                    |  |  |
|       |                   | fire-resistance.                                                                          |  |  |
| 2     | Drawings/         | <ul> <li>Provide for all related drawings / Bill of material for test building</li> </ul> |  |  |
|       | Documents         | and utilities.                                                                            |  |  |
| 3     | Safety            | <ul> <li>Provide necessary arrangement to stop the fire in device under</li> </ul>        |  |  |
|       | device(offered by | test according to the local law.                                                          |  |  |
|       | the customer)     |                                                                                           |  |  |

**Reference of the room** 







Figure 1

#### 4. Reference picture













